

Heimo Truhetz¹), András Csaki¹), Klaus Görgen²)

- ¹⁾ University of Graz, Wegener Center for Climate and Global Change, Graz, Austria
- ²⁾ Institute of Bio- and Geosciences, Agrosphere (IBG-3), Research Centre Jülich, Jülich, Germany

email: <u>heimo.truhetz@uni-graz.at</u> Tel.: ++43 316 380 8442

CLM Assembly 2019 @ Hotel Ariston, Paestum, Italy, September 17, 2019

Acknowledgements

"Research for Climate Protection: Value-adding Convection-Permitting Climate Simulations Austria" (reclip:convex)

funded by the Klima- und Energiefonds through the Austrian Climate Research Programme (ACRP) (ID: KR17AC0K13666) June 2018 to December 2020

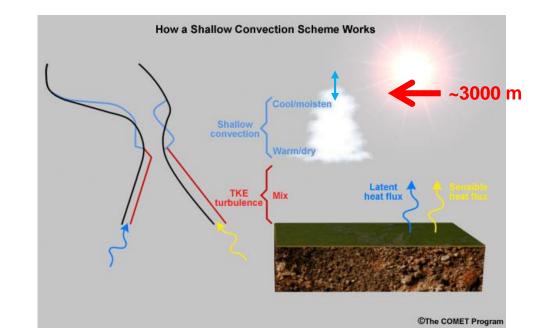
"Non-Hydrostatic Climate Modelling II" (NHCM-2)

funded by the Austrian Science Fund (FWF) (project ID: P24758-N29) Jannuary 2013 to June 2017

"Coordinated Evaluation of Convection Permitting Climate simulations with COSMO-CLM5.0" (CEGPC5.0)

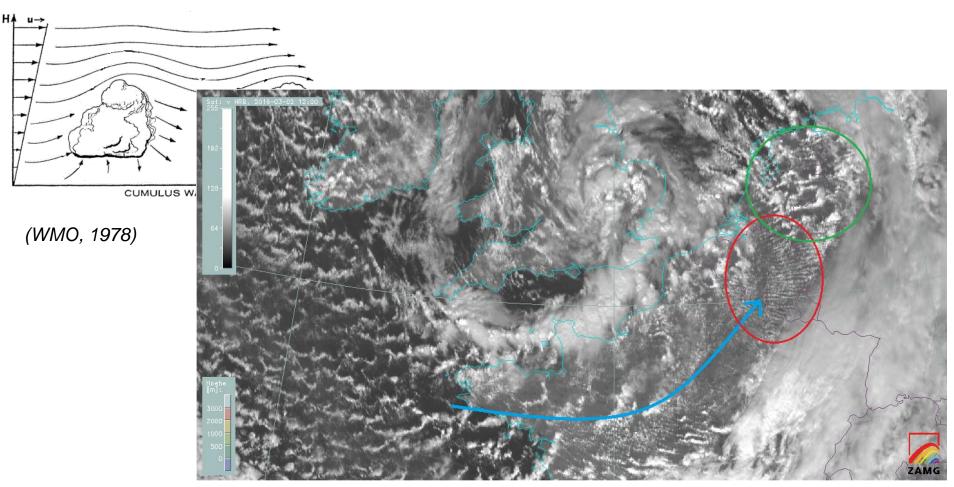
Initiative of WG CRCS

FШF



Shallow cumulus convection

(Flight from Vienna to Naples, 2019-09-16: Shallow convection in action)


Shallow convection

- affects heat, moisture, and momentum exchange between PBL and free atmosphere
- → changes radiation transfer via clouds

(http://stream1.cmatc.cn/pub/comet/nume rical/InfluenceofModelPhysicsonNWPFor ecastsversion2/comet/nwp/model_physic s/navmenu.php_tab_1_page_2.6.5.htm)

(MSG HR-VIS image from 2nd March, 2016, 12:00 UTC from <u>www.eumetrain.org</u>)

Shallow convection induces deep convection hundreds of kilometers downstream via wave propagation

Shallow cumulus convection has global consequences

Geophysical Research Letters

Climate 🔂 Free Access

Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation

Guang J. Zhang 🔀, Xiaoliang Song

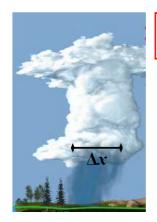
First published: 08 May 2009 | https://doi.org/10.1029/2009GL037340

8 Impacts of Vertical Structure of Convection in Global Warming: The Role of Shallow Convection

<u>Chao-An Chen</u> Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

See all authors & affiliations

https://doi.org/10.1175/JCLI-D-15-0563.1


Received: 11 August 2015 Final Form: 18 March 2016 Published Online: 10 June 2016

"Shallow convection...

... will strengthen the tropical circulation and enhance vertical motion..."

Shallow cumulus convection

Resolution Issues (cont'd)

Deep convection is "permitted", do we need a parameterization scheme?

- (i) Keep deep convection parameterization scheme but make it resolution dependent, i.e. the scheme should become less active as the mesh size decreases (e.g. Gerard and Geleyn 2005, Gerard et al. 2009, Gerard 2012, http://convection.zmaw.de for further references).
- (ii) Switch off deep convection scheme but use shallow convection scheme (COSMO-DE solution).
- (iii) Switch off deep convection scheme and use unified turbulence-shallow convection scheme formulated in the in the language of second-order closure (Machulskaya and Mironov 2013).

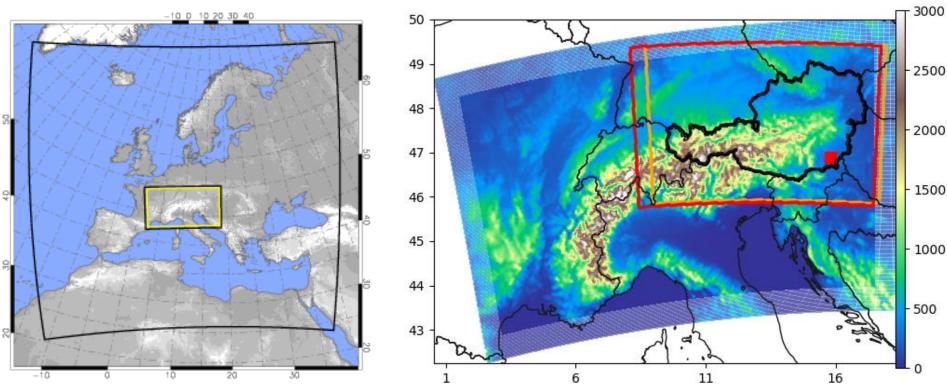
IMHO, (iii) is the way to go.

Resolution Issues (cont'd)

Shallow clouds and PBL turbulence are unresolved and should be parameterized.

Image http://en.wikipedia.org/wiki/Weather_lore

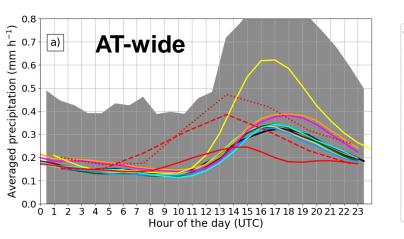
(With curtesy Mironov, 2015)

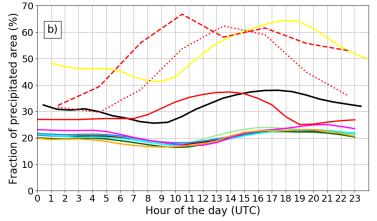

For convection permitting simulations

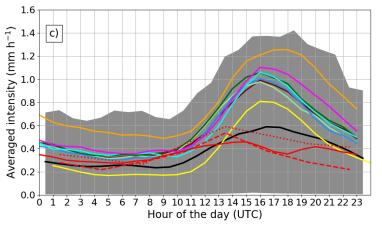
It is generally advisable to make use of a shallow convection parameterisation scheme

Experimental setup

• NHCM-2

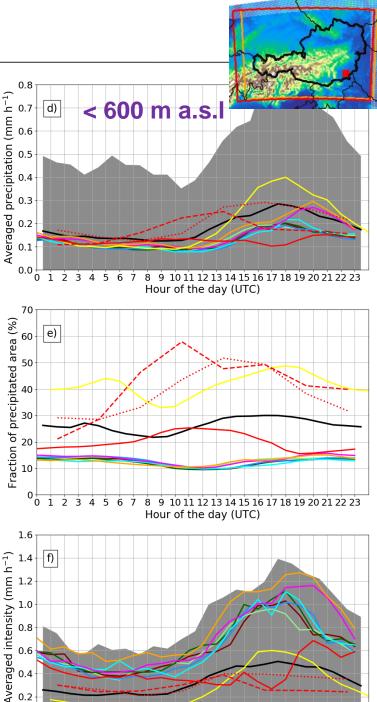

(Piazza et al., Met. Z., 2019)

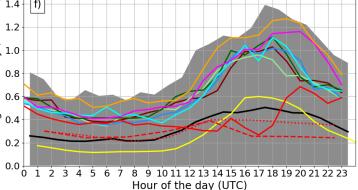



- 12.5 km (EUR-11) \rightarrow 3 km (GAR) and direct nesting
- 3 km: deep conv. OFF; sh. conv. ON/OFF
- 7 sensitivity runs with **CCLM5.0**
- period: JJA 2006 to 2009
- spin-up: 26 years (CCLM4.8)
- ERA-Interim, IFS
- INCA (Haiden et al., 2011) \rightarrow diurnal cycles in averaged precipitation AT-wide, below 600 m a.s.l.

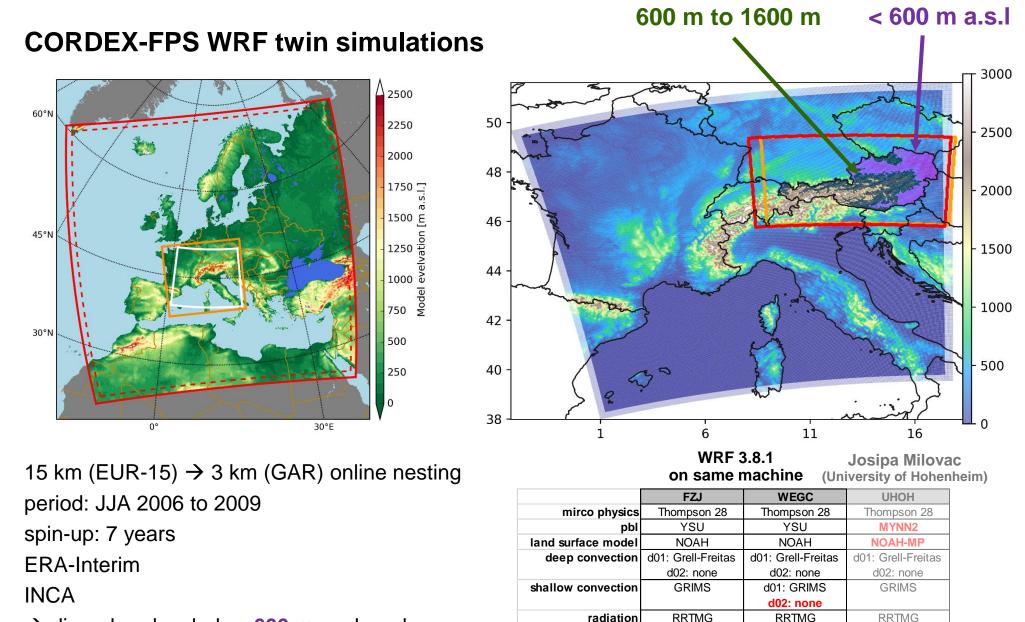

REF	no deep conv.; sh.conv. = Tietdke REF	
turbulence	tur_len = 150;	TURB1
	no correction of vertical turbulent diffusion	TURB2
mirco physics v0snow = 15; qc0 = 0.0005		MICROPHYS
LBCs	1 h update freq., incl. W	LBC_FW
	IFS as driving data	LBC_IFS
	no shallow conv.	NTC_IFS
	no deep conv.; sh.conv. via PBL (Quasi-	
WRF 3.7.1	Normal Scale Elimination; QNSE)	WRF3

Results NHCM-2




AT-wide:

- added value compared to -> coarser resolution
- diurnal cycle is well represented, but precipitation events are too small and too intensive
- → shallow conv. gives more intensive events


< 600 m

- afternoon peak is underrepresented
- \rightarrow events are even smaller; intensity is unchanged
- diurnal cycle of sizes is missing
- shallow conv. gives more -> intensive events

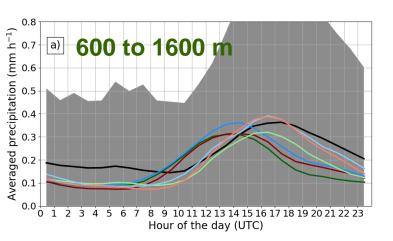
Experimental setup CORDEX-FPS WRF

MM5

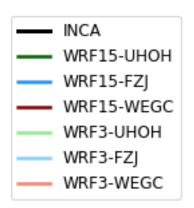
ra & mp impact

surface layer aerosol treatment MM5

ra & mp impact

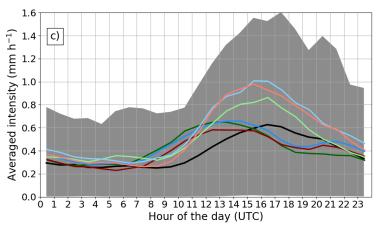

MYNN

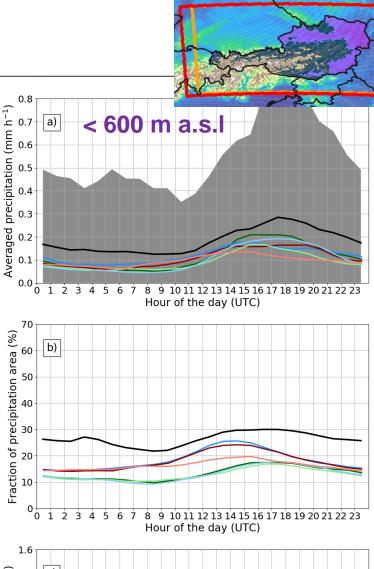
ra & mp impact

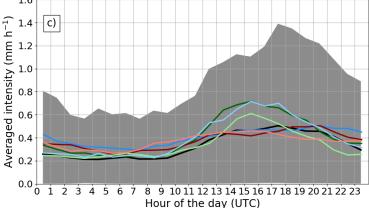

 → diurnal cycles below 600 m a.s.l. and from 600 m to 1600 m a.s.l

•

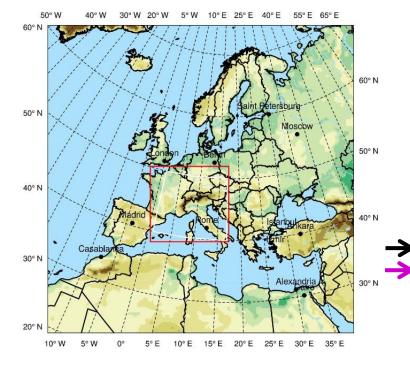
Results WRF



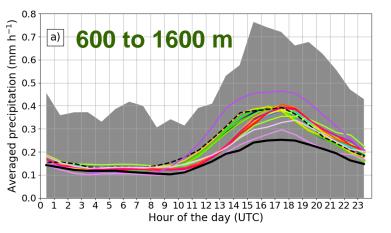

600 m to 1600 m

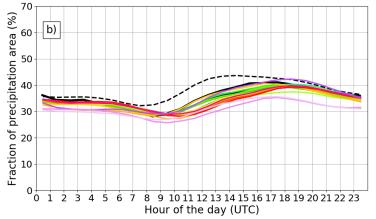

- added value compared to coarser resolution
- diurnal cycle is well represented, but precipitation events are too small and too intensive
- → shallow conv. has no effect

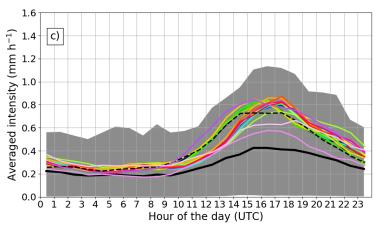
< 600 m

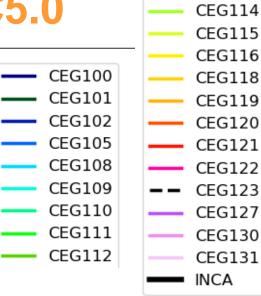

- afternoon peak is underrepresented
- events are even smaller; intensity is unchanged
- shallow conv. Is important for realistic diurnal cycle

Experimental setup CEGPC5.0

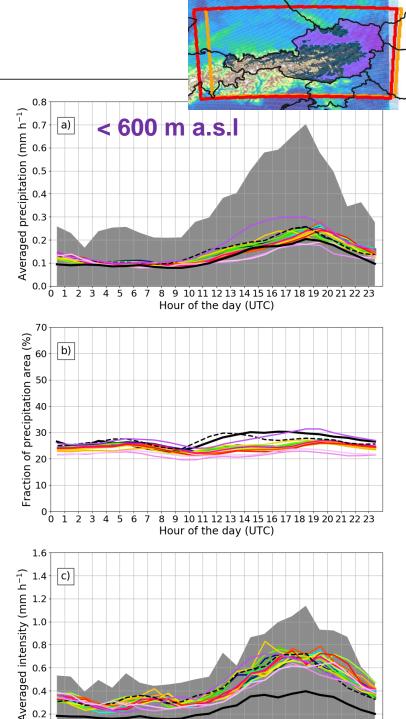

• CEGPC5.0




- 3 km (GAR) direct nesting
- period: 2008
- spin-up: 1 year
- COSMO-DE
- INCA
- → diurnal cycles below 600 m a.s.l. and from 600 m to 1600 m a.s.l


Simulation ID	Namelist-Parameter	value in reference config CEG100	tested values
CF C 1 0 0		reference config cosmo-	
CEG100		SW2_20150421_5.0	
CEG101	dt	25s	10s
CEG102	dt	25s	15s
CEG105	itype_heatcond	1	2
CEG108	llake	TRUE	FALSE
CEG109	itype_root	1	
CEG110	itype_albedo	1	2 forcing CEG_albedo
CEG111	itype_albedo	1	3 (try without new spin up)
CEG112	itype_albedo	1	4 (try without new spin up)
CEG113	Iradtopo	FALSE	TRUE
CEG114	Isso	FALSE	TRUE
CEG115	hincrad	0.25	0.1667
CEG116	hincrad	0.25	5 0.5
CEG118	itype_aerosol	1	2(Tegen)
CEG119	itype_evsl	2	2
ced no shallow conv.		2	2
		3	3
CEG122	itype_turb	3	3 2
CEG123	lconv	TRUE	FALSE
CEG127	radqc_fact	0.5	0.8
CEG127	radqi_fact	0	0.0
revised optical thickness of			5 4
		or sub-gria ciouas	TRUE
CEG130	ladv symmetric	not existing	TRUE
	l_diff_cold_pools hd_corr_u_bd hd_corr_t_bd hd_corr_p_bd	not existing	TRUE
		0.75	5 (
		0.75	5 (
		0.75	5 (
	as CEG130 but Isso		
	tkhmin	.FALSE.	.TRUE.
	tkmmin	0.4	0.01
CEG131	rlamheat	0.4	0.01
	gkwake	1	0.5249
	I_diff_Smag	0.5	5 0.8
	Itkesso	.TRUE.	.FALSE.
		.FALSE.	.TRUE.

Results CEGPC5.0 AMJJAS 2008


CEG113

600 m to 1600 m

- afternoon peak is systematically overestimated
- events are too small and too intensive
- no shallow conv. overestimates size of events and onset is too early

< 600 m

- afternoon peak is better captured
- events are still too small; -> intensity is unchanged
- diurnal cycle of event size is largely missing
- no shallow conv.: onset is too early

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Hour of the day (UTC)

0.6

0.4

0.2

0.0

Conclusions

- A shallow convection parameterisation is required in low lands; it has a minor impact in mountains
- "Good looking" afternoon peak in summertime precipitation is based on a cancellation of different biases (overestimated intensities and underestimated areas)
- Phenomenon of "too small and too intensive" events is unclear
- → Missing afternoon peak in event "sizes" is unclear
 → CEG127 gives most promising results